Worksheet –Revision	Subject: - Mathematics	Class: - VIII	Teacher: - Ms. Neeru
Name:	Class & Sec:	Roll No.	Date: 21.08.2020

Class VIII Math MCQ For Squares and Square Roots

- 1. Which of the following can be a perfect square?
 - (i) A number ending in 3 or 7
- (ii) A number ending with odd number of zeros
- (iii) A number ending with even number of zeros
 - (iv) A number ending in 2.
- 2. Which of the following can be the square of a natural number 'n'?
- (i) sum of the squares of first n natural numbers
- (ii) sum of the first n natural numbers
- (iii) sum of first (n 1) natural numbers
- (iv) sum of first 'n' odd natural numbers.
- 3. Which of the following is the number non-perfect square numbers' between the square of the numbers n and n + 1?

(iv)
$$2n + 1$$

4.	Which of the following is the
dif	ference between the squares of
two	o consecutive natural number is:

- (i) sum of the two numbers
- (ii) difference of the numbers
- (iii) twice the sum of the two numbers
- (iv) twice the difference between the two numbers.
- **5.** Which of the following is the number of non-perfect square number between 172 and 182?
- (i) (ii) 35 (iii) 34 (iv) 70 613
- 6. Which of the following is the difference between the squares of 21 and 22?
- (i) (ii) 22 (iii) 42 (iv) 43 21
- **7.** Which of the following is the number of zeros in the square of 900?
 - (i) 3 (ii) 4 (iii) 5 (iv) 2

8. If a number of n-digits is a perfect square and 'n' is an even number, then which of the following is the number of digits of its square root?

$$\frac{n-1}{2}$$
 (i) (ii) $\frac{n}{2}$ (iii) $\frac{n+1}{2}$ (iv) $2n$

9. If a number of n-digits is perfect square and 'n' is an odd number, then which of the following is the number of digits of its square root?

$$\frac{n-1}{2}$$
 (i) (ii) $\frac{n}{2}$ (iii) $\frac{n+1}{2}$ (iv) $2n$

10. Which of the following is a pythagorean-triplet?

(i)
$$n$$
, $(n^2 • 1)$ and $(n^2 + 1)$
(ii) $(n - 1)$, $(n^2 - 1)$ and $(n^2 + 1)$
(iii) $(n + 1)$, $(n^2 - 1)$ and $(n^2 + 1)$
(iv) $2n$, $(n^2 - 1)$ and $(n^2 + 1)$